JASPER RIDGE BIOLOGICAL PRESERVE

ANNUAL REPORT 2002-03 · STANFORD UNIVERSITY

The most basic rules of the world-the ones we all live by-are ecological rules. You can't study them or even perceive them very well in a classroom or laboratory. Whether one is a botanist, a biologist, or an earth scientist, it's imperative to go out on the mountainside, watch the rain fall over a valley, dig into the earth beneath a fallen tree, or wade a creek for cobbles with sources upstream. The best work in the natural disciplines all starts with observations in nature.

> -KENNETH S. NORRIS, Founder of the University of California Natural Reserve System

FROM THE DIRECTOR

rowth is the goal, it is a condition we associate with success, it is viewed as a desired outcome, and it is one of our cultural mantras. But not all growth is identical, desirable, or sustainable. Acknowledging limits is a hard-won lesson, and in my experience, many of our most creative accomplishments emerge from acknowledging our limits and turning them into new opportunities.

Jasper Ridge is faced with limits to growth and is susceptible to the strains and stresses associated with approaching limits. Some of the growth and the associated constraints are of our own making-the growth in research, class use, tours, and other program activities. These have raised questions about how much activity can be accommodated by the Preserve without compromising the quality of Preserve activities or the unique resources that make the Preserve so invaluable. Other pressures are external to the Preserve and come in all shapes and sizesdevelopment and land use along our boundaries, the political and

management realities of residing within an increasingly urbanized landscape, and the regional and global changes that confront us all.

There are numerous paths toward addressing these challenges, and making the right choices is a formidable task. Challenges associated with fire management, the future of Searsville Lake and Dam, and the continuing problems caused by invasive species such as West Nile Virus all demand careful attention. Staying focused on the Preserve's mission without being overwhelmed by the crisis du jour requires considerable clarity and discipline. In an effort to assure a continued focus on the Preserve's future, a Strategic Planning Committee was formed in November of 2002, with Chris Field (Director, Department of Global Ecology, Carnegie Institution of Washington) as its chair. Other members of the Committee include: Professors Deborah Gordon (Biological

Sciences) and David Freyberg (Civil and Environmental Engineering); graduate students Will Cornwell and Lisa Moore; community members Bill Gomez, Jeanne Sedgwick, and Irene Brown; Nona Chiariello (Jasper Ridge Research Coordinator), as well as myself. The charge of the Committee is to identify policies and priorities for addressing the broad range of management issues faced by the Preserve in the coming years while prioritizing the major components of the Preserve's mission.

From my perspective, one encouraging feature of the Strategic Planning Committee's formation is that it precisely follows what was outlined near the end of last year's

annual report statement—the need to address the challenges of managing the Preserve within the context of an urban-wildland interface. How well we adjust to this context without compromising the mission of the Preserve is the single greatest challenge to the Preserve's continued productivity and viability.

This past year has been marked by several events that bear out the complexities of operating within an urban-wildland interface zone.

On July 26th there was a small grassland fire at the Preserve. While this event was contained to less than two acres, the reactions that it engendered from neighbors and local officials further demonstrated the difficulties of developing and implementing a fire management plan that both protects the mission of the Preserve and reduces the risks to residents near the Preserve.

In anticipation of growing neighbor concerns, the Preserve is currently fieldtesting a highly sensitive infrared sensor system for monitoring fires. If successful, this will provide an early warning and response system for fires that approach or begin on the Preserve. This is one of several management efforts that the Preserve is engaged in to help ensure that our mission is not compromised while addressing some of the con-

cerns of the surrounding communities.

A second event is the anticipated arrival of West Nile Virus. Given the close proximity of residents to the Preserve's wetland habitat adjacent to Searsville Lake, San Mateo County has expressed concerns about managing potential risks. As a result, County officials are requiring that we proactively manage mosquitoes with a larvicide spray that uses a bacterial agent, *Bacillus sphaericus*. Hence, while being invaded by one invasive species, we must resort to bringing in another non-native species to meet County public health concerns.

This is an expensive undertaking with as yet undetermined management implications

ence with the ecosystem functions we are trying to understand and sustain.

While this past year has highlighted important challenges, there are also important accomplishments on several fronts. First, we celebrated our first year in our new building, the Leslie Shao-ming Sun Field Station. I'm proud to note that the Sun Field Station

> was the recipient of the County of San Mateo RecycleWorks Green Building Award and received a merit award from the San Diego Chapter of the American Institute of Architects. In addition, we have installed a complete energy monitoring system to document the performance of the Sun Field Station. Data from the monitoring system can be seen on our website. This system is designed not only to help educate others on

that emphasizes the permeable nature of the boundaries between the Preserve and nearby residential properties. I specifically mention these issues because it highlights what will be a continuing source of both stress and opportunity—how to reconcile the demands and expectations of a growing human presthe sustainable features of the new building, but also to document the degree to which we achieve one of our original goals—annual energy use resulting in net zero carbon emissions. It is one thing to announce such a goal, it is another to provide a measure of how close we've come to achieving it.

When I first proposed a new facility for the Preserve, my concern was the growing needs of Jasper Ridge programs. One of the "fuzzier" goals of the new facility noted in the National Science Foundation grant proposal submitted in support of the project was to "capitalize on the synergy between the research, teaching, and volunteer programs." This first year in the Sun Field Station has proven the truth of that statement. One successful program made possible by the expanded and improved space in the Sun Field Station is monthly luncheon roundtable presentations by researchers on topics of interest to the JRBP community. This program, initiated almost entirely by docents, has featured topics ranging from yellow star thistle invasion and management to chemical comand munication animal behavior. Roundtables planned for the coming year range from the future of Searsville Lake to the science of global climate change. It is precise-

ly this kind of synergistic activity among all the diverse members of the JRBP community that we look forward to promoting in the Sun Field Station.

This past year has also been marked by the amazing productivity of researchers at Jasper Ridge. I encourage you to review the research highlights, especially the recent work of the labs of David Ackerly and Deborah Gordon. In addition, this past year is marked by major publications emerging from the Jasper Ridge Global Change Experiment. These publications (see Appendix 2) appearing in the journals *Science* and the *Proceedings of the National Academy of Sciences*, have brought into question several assumptions about how grassland ecosystems are likely to respond to global climate change. The body of work that has emerged from this past year is a tangible example of why biological field stations such as Jasper Ridge are so important.

This annual report is the ninth iteration. When I first started this tradition, it was with the intent that it would become a vehicle for communicating the importance of the Preserve to Stanford and neighboring communities, as well as a yearly reminder to supporters and the JRBP community of how their efforts fit into a larger context. As we produce this report each year, I find myself comparing the present with the past. Last year's annual report was acknowledged with a Gold Award for superb craftmanship in the East Bay and Diablo Craftsmen's Club Competition, a testament to the publication skills and talents of Rebecca Young, former GIS and Data Manager. This year we hope to continue this tradition of excellence.

I encourage you to page through this document and read it closely. You will see a remarkable pool of talent and commitment from volunteers, researchers, faculty, students, and committee members. This year, I want to close by acknowledging the staff at Jasper Ridge. Their continued good sprits, commitment, and professionalism are vital to protecting and supporting so much that we celebrate

at JRBP.

Philippe 1. Chan

RESEARCH HIGHLIGHTS

Research at JRBP this year continued its growing focus on environmental and biotic change. Whereas much of the Preserve's research in the past focused on mechanisms and processes underlying adaptations to the Jasper Ridge environment, a common thread of much current research is how ecosystems function in a changing world. Longtime observers of the Preserve will detect in this annual report a sharpening contrast with the Preserve's history.

Recent discoveries suggest the extent and magnitude of change facing JRBP. Professor Deborah Gordon's research group discovered that Argentine ants invading JRBP not only displace some native species but also disrupt interactions among those that remain. Studies within the multi-investigator Global Change Experiment found that levels of atmospheric CO₂, nitrogen deposition, temperature, and precipitation expected in the next century can alter both plant communities and microbial communities in the soil. And Professor Paul Ehrlich's long-term studies of Bay checkerspot butterflies have linked the butterfly's extinction at JRBP to weather variation associated with climate change. These findings, together with many of the year's publications, point to major changes in the biotic communities of Jasper Ridge. That such a coherent theme emerges from diverse and independent research programs is perhaps the strongest message of all.

The importance of change at JRBP-both realized and anticipated-underscores the value of long-term studies. For example, because of the long duration of the Gordon lab's studies of invasion by Argentine ants, researchers have been able to compare many individual survey points pre- and post-invasion, in addition to using the short-term approach of snapshot comparisons between invaded and uninvaded points. A study organized by former Stanford Ph.D. student Nathan Sanders used both types of comparisons to analyze the spatial distribution of native ant species that withstand invasion. The team found that before invasion, native ant species tend to have more organized communities (with reduced spatial overlap among species), but they change to more random communities (with greater overlap) soon after invasion, a process the researchers term "community disassembly." Had the team used only short-term comparisons of invaded and uninvaded sites, they wouldn't have been able to rule out the possibility that the pattern was due to intrinsic differences between sites that were invaded and those that were not.

The Global Change Experiment, now in its sixth year of studying the response of natural grassland to anticipated environmental changes, experienced change of another sort. In July, a wildfire spread into the experiment and burned a quarter of the study plots. As researchers grappled with the impact, Professor Chris Field proposed a way of moving forward: continuing the main experiment with six replicates of each treatment, and repairing the burned plots so the effects of the fire could be studied with a modified experimental design. After two months of replacing devices that monitor or apply treatments in the

Sixty-six studies were active this year, nearly half of them associated with long-term studies led by investigators from Stanford and the Carnegie Institution. Among researchers from the Stanford campus, three Schools and nine departments or programs were represented. A dozen new studies, including five by visiting investigators, were started in geology, ecology, and phylogeography (topics at the interface of phylogenetics and geography). Principal investigators included 30 faculty and senior scientists, 10 postdoctoral fellows, 12 graduate students, and three undergraduates who produced 38 publications, dissertations, and theses. See Appendices 1 and 2 for details.

burned plots, the experiment was ready for the current growing season and the opportunity to study the interaction between fire and other environmental changes. Because the fire occurred within a long-term experiment, its effects will be interpreted in relation to six years of pre-burn measurements, as well as to ongoing studies of unburned plots.

Of the many aspects of ecosystem change investigated at Jasper Ridge, none is more challenging than freshwater dynamics. With a dam nearing the end of its 'useful' lifespan, a watershed fundamentally altered by the dam, and expected changes in the rainfall regime, the Preserve faces challenges in understanding and managing water resources that affect a large landscape. The remainder of this overview of research examines a diverse set of studies that bear on many water-related issues. UNESCO's designation of 2003 as the International Year of Freshwater Resources is a reminder that such challenges are globally important.

DYNAMICS OF WATER RESOURCES

A common theme across diverse studies at JRBP is the importance of annual variation in precipitation. For example, several recent studies have found lasting signatures of extreme rainfall years. One such year was "water year 1998," the twelve month period beginning in October, 1997 and ending in September, 1998, which coincided with the setup of the Global Change Experiment. Researchers made pre-treatment measurements on experimental plots during 1998 so they could later make pre- and post-treatment comparisons, in addition to comparisons across treatments. While the record-setting rainfall of 1998 did not produce the pre-treatment baseline the researchers expected, it allowed them to capture processes that may be equally important. For example, postdoctoral fellow Jeff Dukes found that aboveground plant growth in 1998 was greater than control plots have produced in any year since. Even more importantly, the record rainfall facilitated widespread establishment of perennial grasses and forbs. These perennials were dwarfed by faster-growing annuals in 1998, but their foothold was secured. Dukes found that by 2002, well-established perennials were co-dominant with annuals in a fifth of all study plots, independent of the experimental treatments. Production data for 2003 are the first to suggest a reversal in the expansion of perennials.

Research at Stanford's Center for Conservation Biology now attributes the Bay checkerspot butterfly extinction at JRBP to changes in the frequency of extreme water years. In two papers authored by former CCB researchers John McLaughlin and Jessica Hellmann, CCB Director Carol Boggs, and Professor Paul Ehrlich, a nearly 40-year record of the butterfly's population size is analyzed alongside an even longer record of total precipitation during each growing season. By statistically comparing 20-year intervals along the rainfall record, they found that precipitation totals were more variable after 1971 than before. Mathematical relationships between annual rainfall and butterfly population size suggest that population crashes were very likely after 1971, as indeed occurred, leading to extinction of two independent sub-populations of the Bay checkerspot in 1991 and 1998. The model predicts that if rainfall variability had continued at pre-1971 levels, the butterfly would have persisted at JRBP for centuries longer. Previous studies by Professor Ehrlich's group have shown that drought years threaten the butterfly by prematurely drying up foodplants consumed by larvae, while very wet years tend to be too cold for larvae to grow adequately. Thus, either kind of extreme in local climate conditions can threaten the butterfly.

HABITAT COMPARISONS

Other studies are asking how site-to-site differences in water availability affect the variation in physiological characteristics within plant communities. Such studies may help researchers predict how biotic communities will shift in response to climate change. Will Cornwell, a Ph.D. student working with Stanford Professor David Ackerly, is studying woody species along gradients in water resources, such as from ridgelines to ravines, and from south- to north-facing slopes. He has found that towards the dry end of the gradients, there are opposite patterns in two important indicators of adaptive physiology. The density of wood in stems is more uniform in dry sites than would be expected from a random assemblage of species, while the size of leaves is more variable than expected. These findings suggest that high levels of water stress impose tight constraints on wood density but allow alternative leaf adaptations, such as deciduousness or reduced physiological activity.

Katherine Preston, a researcher and lecturer from the Ackerly lab, has been studying extremes of water availability from an evolutionary perspective. She is comparing leaf and stem properties across pairs of related species from contrasting climates, and has found parallel evolutionary divergence across multiple pairs. Species of dry habitats have properties that mitigate the risk of losing water through their leaves faster than it can be moved through their stems. For example, such species have a reduced total surface area of leaves for stems of a given thickness. These and other traits reduce the likelihood that the threadlike columns of water in the stem will rupture, leaving plants facing a pump-priming dilemma.

In his recently completed Ph.D. dissertation, Nishanta Rajakaruna (University of British Columbia) took an approach that

combines elements of both Cornwell's and Preston's work. Rajakaruna asked whether similar patterns of evolutionary divergence occur along gradients of water availability both within sites and across regions. Rajakaruna studied goldfields, Lasthenia californica, and found that plants in well-drained ridgetop areas of JRBP were genetically distinct from plants in the soggier swales. The details of their adaptations reflect the complex role of water in ecosystems. Although plants from ridgetops are better adapted to drought, swale plants are better adapted to salt stress, a condition typical of swales, where ions collect after leaching from the slope. These ridge and swale habitats are so common in serpentine grasslands that Rajakaruna considers JRBP a microcosm of conditions and responses across the species' range.

Soil chemistry has another important dimension in serpentine grasslands because of the presence of potentially toxic elements, such as chromium. Chris Oze studied these soils for his Ph.D. dissertation as a model for what to expect in soils contaminated by chromium-laden industrial waste. Oze found that hexavalent chromium—the toxic form—was undetectable in rocks, soils, and clays, but when he turned to the soil solution, he found the opposite—a majority was the toxic form. Experimenting with soil samples in the lab, Oze discovered that the chemical conversion between toxic and benign forms of chromium depends on how long the soil stays wet and how much organic matter and other minerals are present. In the field, groundwater samples from the bedrock serpentinite contained concentrations that exceed limits set by the U.S. Environmental Protection Agency, a result with important implications for managing waste sites.

GLOBAL CHANGE EXPERIMENT

Many of the complex physiological and evolutionary patterns that will affect responses to future environmental change are being studied in the Jasper Ridge Global Change Experiment, directed by Professor Chris Field (Carnegie Instit.) together with Professors Brendan Bohannan, Harold Mooney, and Peter Vitousek (Stanford), Shauna Somerville (Carnegie Instit.) and James Tiedje (Michigan State Univ.). Added precipitation, applied via sprinkler irrigation after each major rainfall and twice after the season's final rainfall, is included in eight of the experiment's sixteen different treatment combinations, making it possible to study how future increases in precipitation may interact with other environmental changes.

One hypothesis that researchers are testing in the Global Change Experiment is that ecosystem responses to global changes, including increased precipitation, are likely to be shaped by changes in the availability of soil nu-

- 1. Using a Sunfleck Ceptometer, Kris Hulvey measures light levels in a grassland microcosm. She and Dr. Erika Zavaleta will use the data to determine the effect of species diversity change on grassland susceptibility to yellow starthistle invasion.
- 2. Jean Knops of the University of Nebraska and Walt Koenig of U.C. Berkeley count acorns in September, 2003 as part of their statewide survey of acorn production by California oaks.
- 3. Ph.D. student Nicole Heller finds and marks an Argentine ant nest as part of a three-year study measuring the survival and growth of individual ant nests.
- 4. Undergraduate Kenny Dixon measures leaf area as part of a study relating plant functional traits and ecological distribution, led by graduate student Will Cornwell and postdoctoral researcher Katherine Preston.
- 5. Grace Hsu, a senior at Saratoga High School, positions a meter-long rod of light sensors at various heights above the ground to study the penetration of light through standing litter to germinating seedlings.
- 6. The Center for Conservation Biology's Jennie Kluse measures vegetative cover with a laser-pointer pin-board sampler.
- 7. Postdoctoral researcher Katherine Preston prepares shoots for a study comparing biomass of leaves and stems in 55 species across light and moisture gradients.
- 8. Ph.D. student Lisa Moore positions a chamber for measuring the rate of soil respiration in a grassland plot.
- 9. Graduate student Virginia Matzek preserves oak leaves in liquid nitrogen for a physiological study of fast and slow growth in plants.
- 10. Duncan Menge, Stanford Class of 2003, takes a soil core from the Jasper Ridge Global Change Experiment for his undergraduate honors thesis work on phosphorus limitation under global change manipulations.
- 11. Center for Conservation Biology research staff Paulo Oliveira collects seedbank samples at a Jasper Ridge reference site for the Stanford Foothills grassland restoration project.

trients that are essential to plants. Duncan Menge, a Stanford undergraduate, designed his Honors thesis project to find out whether global change factors that relieve limits to plant growth by one nutrient lead to limitation by another. He was particularly interested in relative limitation by nitrogen and phosphorus, two of the most common nutrient limitations to plant growth. He found that added water reduces the amount of an enzyme that frees phosphate ions from organic compounds in the soil, a key step in making those ions available for uptake by plants. From this and other results from his thesis, Menge concluded that added water reduces phosphorus availability but reduces nitrogen availability even more. Studies by postdoctoral fellows Peter Horz and Adrian Barbrook, working with Professor Brendan Bohannan, identify one mechanism behind the altered nitrogen availability. They have found that with added precipitation, there is a decrease in the abundance of bacteria that oxidize ammonium to nitrite, a key step regulating the amount of nitrate available to plants.

Although plants might be expected to compensate for reduced nutrient availability by growing more or deeper roots, Ph.D. student Lisa Moore has found that plots of the Global Change Experiment receiving added moisture have shallower root systems instead. Moore considers this a potentially short-sighted response by the plants because it allows greater growth of shoots early in the season but leaves plants shortchanged later on when drying soils demand more extensive root systems. This trade-off may help explain an important response of annual primary production discovered by postdoctoral fellow Jeff Dukes: increases in the length of the growing season (determined by the dates of the first and last significant rains) tend to produce increases in primary production, whereas augmenting water within a naturally triggered growing season does not. Added moisture does, however, shift the seasonal impact of natural herbivory by snails and slugs. Ph.D. students Halton Peters and Elsa Cleland, together with high school senior Grace Hsu, found that in the treatments with added water, herbivory was diminished in fall and increased in spring, a shift that appears to have significant effects on the composition of the plant community. All of these findings underscore the need for more detailed predictions of the timing of precipitation in regional models of future climate change.

WATERSHED STUDIES

Both the timing and amount of precipitation affect the movement of water through ecosystems. Surface runoff and groundwater transport from roughly half the Preserve feed into Searsville Lake, which also drains another 14 square miles of forested slopes on highly erodable geologic formations in the Coast Range. Runoff from the watershed washes soil, rocks, and plant debris into Searsville Lake, which traps roughly ninety percent of the sediment. A century of deposition in the lake has drastically reduced both its area and depth. This year, Stanford Professor David Freyberg began studying how the groundwater in vegetated alluvial areas interacts with the active waterways. His studies have already shown that the summer drawdown of the lake triggers a parallel but delayed decline in groundwater energy. These studies will be important for predicting what will happen to biotically sensitive wetlands in the future.

Groundwater dynamics also affect the extent to which Searsville Lake is storing carbon that would otherwise contribute to increases in atmospheric carbon dioxide, a greenhouse gas. Ph.D. student Asmeret Asefaw Berhe (U.C. Berkeley) is working with a team of scientists from the U.S. Geological Survey who have been studying 40-foot cores of sediment they removed from the lake. Berhe joined them to analyze the fate of carbon that had been carried down from the watershed as plant litter and organic matter in soil. They have found that buried sediments in the deepest area of the lake contain organic carbon that has been largely preserved and will remain so for a thousand years or more if left in place. By contrast, sediment in periodically drained alluvium near the lake's main tributary may be subject to more rapid decomposition and/or less effective burial. The lake is preserving less and less additional carbon, however, because of its decreasing capacity to store sediment.

The dam not only withholds sediment from its outflow creek, San Francisquito, but also alters the seasonal flow characteristics of

that creek. At various times since 1996. Jonathan Owens, Chris White, and Barry Hecht of Balance Hydrologics have studied how these changes in outflow might affect native strains of steelhead trout and other stream dwellers. Currently they are measuring flow over the dam and are setting up a station for monitoring water quality in Bear Creek, a major tributary of San Francisquito. Their studies are sponsored by Stanford Utilities and are part the cooperative Long-Term of Monitoring and Assessment Program (LTMAP) for San Francisquito Creek.

Researchers Gordon Holtgrieve and Scott Loarie and Stanford Conservation

Biologist Alan Launer have continued their monitoring of San Francisquito Creek for sensitive species such as steelhead and California red-legged frogs, both federally protected species. This year they completed an analysis that suggested that the distribution of redlegged frogs may be constrained to the middle reaches of the creek by both urban development and non-native crustaceans in downstream areas and by invasive species in the upper reaches, especially predatory bullfrogs and bass carried by Searsville Lake's outflow. The team also discovered marked fluctuations in one of the Creek's potentially most disruptive invaders, mitten crabs, which migrate

upstream from San Francisco Bay. In 1999 and 2000, the team observed hundreds of crabs as far as two kilometers into JRBP, but in 2002, they saw none. Because crab migration requires moderate streamflow, the researchers suspect that population declines may be caused by either very dry years or wet years with very high streamflow. Hydrologic changes occurring at JRBP are critical to the local watershed and representative of broader—sometimes global—challenges. Although research programs at Jasper Ridge are diverse and independent, often they intersect along common themes. For example, several recent studies at JRBP underscore the importance

> of the hydrologic regime in the evolution of the flora and the composition of communities, while other studies consider processes by which predicted changes in rainfall may alter species and ecosystems in the future. Results from the Global Change Experiment emphasize that the consequences of these changes will depend on other environmental changes and their effects on soil nutrients. In coming years, Searsville Dam and Lake will be an important focal point in local freshwater resources. The dam truncated a steelhead spawning run that once extended from the Bay into the upper reaches of the watershed, and also interrupted the natural flux of sediment from

the Coast Range to the Bay. Studies of these impacts, together with monitoring and experimental studies of biotic communities, groundwater, dissolved nutrients, surface flow, and water quality, all provide a growing source of scientific input for managing freshwater resources and contributing to the health of this and other watersheds.

DOCENT / EDUCATIONAL HIGHLIGHTS

n academic year 2002-03, the new Jean Lane Environmental Education classrooms of the Leslie Shao-Ming Sun Field Station housed a stimulating and diverse range of classes, lectures, workshops, and discussions. Stanford University classes included Core

Experimental Laboratory for Ecology (Biology 44Y), Field Studies in Earth Systems (Earth Systems 189), Botany (Biology 120), Jasper Ridge Docent Training (Biology 96), as well as the Scholars Quest Program. Additionally, workshop classes were held quarterly in collaboration with the Stanford Teacher Education Program (STEP) and the Stanford **Ecology and Environmental Sciences** retreat filled the building with students and faculty in March. During spring quarter, the Eastside College Preparatory School's (ECP) Field Studies class collected and studied their ecosystem data with the help of Stanford undergraduates, and in June, Jasper Ridge hosted a

weeklong field trip for Ecological Society of America (ESA) students representing colleges and universities from throughout the United States. For a complete list of instructional use, see Appendix 3.

Biology 44Y brought 250 students to the Preserve for ecology labs during spring quarter.

The students collected and analyzed samples of aquatic systems in Corte Madera and San Francisquito Creeks to explore relationships between abiotic factors and macroinvertebrate diversity and abundance. A series of Hester-Dendy sampling plates were placed at various

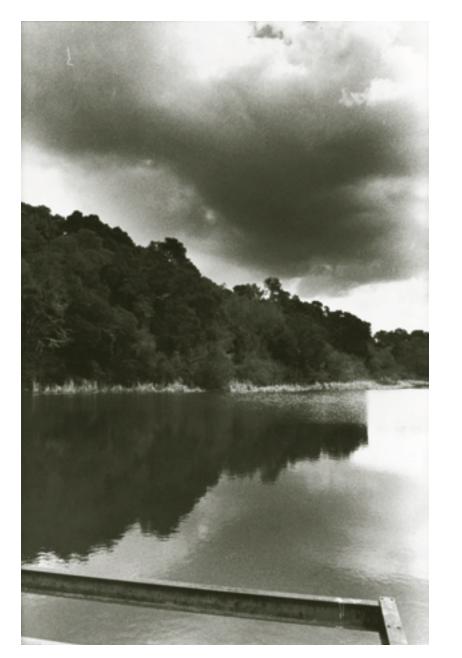
The Jasper Ridge docent class of 2003.

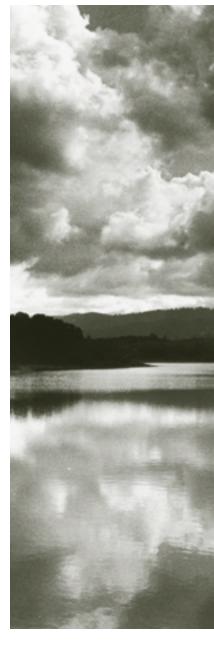
sites in the creeks. These devices, composed of multiple masonite plates divided by nylon spacers, provided artificial substrates for macroinvertebrates and were disassembled by students for specimen examination. The students measured the effects of five abiotic factors: dissolved oxygen, temperature, pH, velocity, and conductivity, on the populations of macroinvertebrates that settled on the plates.

Earth Systems 189 students heard classroom lectures by Stanford faculty members and participated in field studies in the rapidly

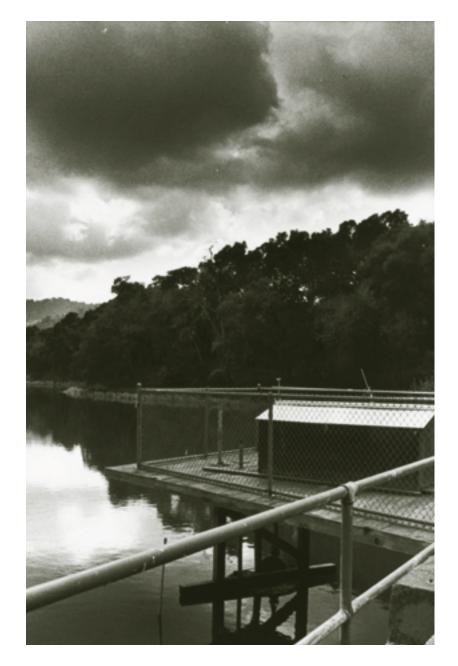
> changing delta region where Corte Madera Creek enters Searsville Lake. a site that is marked by gradients of soil saturation and a pronounced pattern of vegetation succession. Students learned and applied field and laboratory methods in geology, soils, biogeochemistry, and plant ecology as they studied the fundamental workings of this ecosystem. The course emphasized questions and study methods relating to the landforms and rock types resulting from California tectonics, processes involved in soil formation, and nitrogen cycling. Structure, distribution, and the functional properties of the successional plant communities were also investigated by the class.

Spring 2003 marked the fifth year of the Eastside College Preparatory School JRBP Field Studies class. For ten weeks, 15 ECP sixth graders collected data in their ecosystem sites for three hours each Wednesday morning as they worked alongside Stanford undergraduates Laura McClendon, Simha Reddy, and


- 1. Docent and Eastside College Preparatory School mentor Britt Sandler explains the finer details of Jasper Ridge geology in a hands-on class.
- 2. *Kim Carlson and Alvin Chin, 2003 docent trainees, test the water potential of a variety of plants using a pressure chamber.*
- 3. Biology 44Y students Stephanie Hu, Amrit Rao, Camille Palma, and Lisa Yoshimi pose in their waders with teaching assistant Berry Brosi (holding flow meter) after returning from taking measurements of dissolved oxygen, temperature, pH, velocity, and conductivity in San Francisquito Creek.
- 4. Students from the Ecological Society of America SEEDS (Strategies for Ecology Education, Development, and Sustainability) fieldtrip collect fish traps in the San Francisquito creek with Dr. Alan Launer.
- 5. Local high school science teachers participate in one of a series of workshops sponsored by the Stanford Teacher Education Program (STEP) and JRBP.
- 6. Resident Ranger and local mycologist Brooke Fabricant teaches docents Carol Hake and Betsy Clebsch how to key a specimen.
- 7. Abby Hall and David Martinez inventory what they have caught as part of their Biology 96 terrestrial invertebrate class.
- 8. As part of a field exercise in Earth Systems 189, Alicia Aponte and John Juarez access the upper canopy of a willow stand from the bucket of a lift truck in order to monitor light levels and sample leaves.
- 9. Two Eastside College Preparatory School students carefully examine a field specimen with a hand lens before recording their data.
- 10. Mike Greene, postdoctoral fellow in Dr. Deborah Gordon's lab, explains harvester ant Pogonomyrmex barbatus behavior to Jasper Ridge docents during the 2002 Docent Field Trip to the American Museum of Natural History's Southwest Research Station in the Chiricahua Mountains of southeastern Arizona.



Britt Sandler. In addition to collecting data on air and soil temperatures, relative humidity, and plant growth, the students explored special topics including adaptations (plant and animal), insects, botany, geology, and tracking. Students presented their work to peers and ECP faculty at the end of the quarter.


The ESA Strategies for Ecology Education, Development, and Sustainability (SEEDS) Program began in 1996 as a collaborative effort to work towards increasing the number of minorities in the field of ecology. Student field trips are an important component of the program and aim to foster greater student identification with ecology through direct field experience. In June of 2003, JRBP hosted the SEEDS field trip to Northern California which included two days of field work at Jasper Ridge, a visit to Hopkins Marine Station in Monterey, and other sites in the Bay Area. Attendees included 17 students from ten schools, three SEEDS faculty, three staff members from the Ecological Society of America, and one participant from the All Nations Louis Stokes Alliance for Minority Participation (ANLSAMP). More information about the program is available SEEDS at http://esa.org/seeds/.

In academic year 2002-2003, JRBP collaborated with faculty and staff of the Stanford Teacher Education Program (STEP) and held

quarterly teacher training workshops for local middle and high school teachers. Participants gained experience working with new technology for data collection and curriculum design. Utilizing soil temperature probes and specialized software from Vernier, workshop teachers will collaborate during academic year 2003-2004 in a multi-school soil temperature experiment. Students at collaborating schools will have the opportunity to do hands-on field science at their own campus and will develop valuable skills in quantitative analysis as they compare the results of the various locations. These data, which will represent several microclimates in the Bay Area, including soil temperature data from the Jasper Ridge Global Change Experiment (JRGCE), will be entered into a web-based data set and accessible by all participants. The JRBP/STEP/local schools environmental education model provides an opportunity for thousands of students to engage in meaningful scientific activity each year without excessively increasing human use of the Preserve.

The 2003 docent class (Biology 96) was the first to use the new Jean Lane Environmental classroom for lectures and indoor work. Stanford faculty, JRBP staff, docents, and local experts taught classes on subjects such as valuing ecosystem services, geology, soils, hydrology, botany, tracking, terrestrial invertebrates, and global climate change. The class also spent many wet Thursday afternoons in the field, learning firsthand the intricacies of natural history, ecology, and environmental science at the Preserve. In June, these 19 new docents were officially graduated into the JRBP docent community.

Bio 96 and the Jasper Ridge community exemplify the efforts of instructors and

students to provide opportunities for inquiry-based education in ecology and provide a bridge between education (both formal and informal) and the volunteer base of the Preserve.

Looking to the future and the consistent increase in demand for meaningful environmental education, new collaborations at the Preserve are aimed at teacher education and intensive field classes for selected schools. Docent participation is key to the success of these new models. The JRBP/STEP liaison reflects

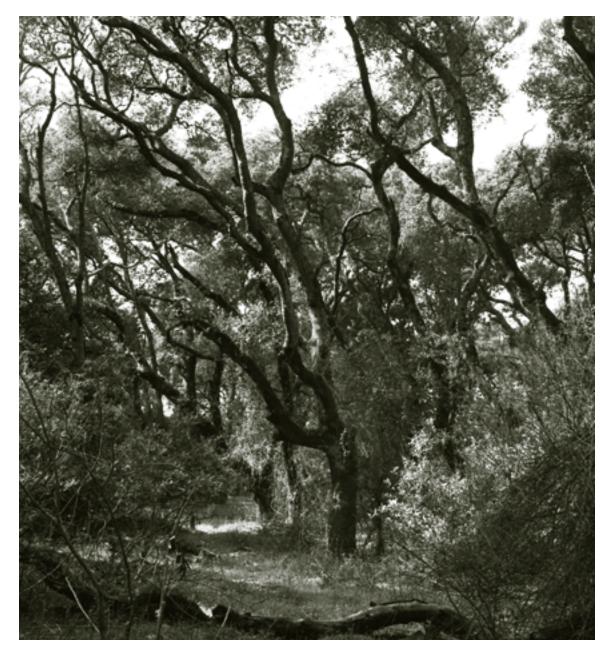
the efforts and expertise of docents Margaret Krebs, Rosa Navarro, Monya Baker, Misty Sato and Bill Gomez. Eastside College Preparatory School's field classes involve a quarter-long mentoring commitment by Stanford docents each year, and docents contribute to the success of Biology 44Y and other classes annually.

Educational opportunities for the JRBP community also continue to increase—many the direct result of docent efforts. Two notable examples of docent-generated education in 2002-03 were the monthly lunch time roundand Bill Gomez and have been supported enthusiastically by the community.

Increasingly, docents have provided valuable contributions to the JRBP research community. In 2002-03 docents contributed to research in many areas including global climate change, ant research, bat research, water quality testing, bird censuses

Malaise insect traps were used to collect insects nightly at the JRBP permanent bat station at Searsville Lake between June and September 2003.

table discussions and the remarkable JR chat list which has provided amazingly broad information to docents via e-mail. Both of these efforts were initially made possible by the generous investment of energy by John Kriewall and more. Over a quarter of the docent community participated in these efforts.


The work of docent Tom Mudd was particularly impressive this year. Tom observed enormous and unaccountable variation in bat activity from night to night at the permanent bat station at Searsville Lake and consulted with emeriti professors of statistics, Lincoln Moses (docent) and Bill Brown (JRBP birder). Analysis of the bat data began with the assis-

tance of Stanford graduate student Sam Hui. After consulting with entomologist Paul Arnaud of the California Academy of Sciences and JRBP researcher, Irene Brown, insect abundance was added as a variable. With the help of docents Patrick Hsieh, Bill Gomez, Dexter Hake, and John Working, high school senior Tim Sun, and Preserve staff, insects were collected nightly using Malaise traps at the bat station between June and September 2003 to investigate the relationship between insect abundance and bat activity. The results of this study, entitled *The Relationship Between Bat Activity, Insect Abundance, and Weather Conditions* were presented at the North American Symposium on Bat Research in October 2003 in Lincoln, Nebraska.

Visitors to the new Sun Field Station are often awed by the energy-saving attributes of this "green" facility and leave having learned substantial lessons about energy conservation and sustainability. Much less obvious, but just as central to the operations of the Preserve, is the energy contributed by the Preserve's phenomenal docent community.

Docent efforts are the hidden energy source that fuels considerable and significant work often without acknowledgment. In 2002-03, this inexhaustible energy source generously supported the Preserve in efforts that ranged from teaching and tours to data collection, physical labor, and a multitude of other tasks.

We thank you.

- APPENDIX 1: RESEARCH PROJECTS —

PROJECT	PRINCIPAL INVESTIGATOR(S)	DEPARTMENT OR DIVISION	INSTITUTION
Comparative ecology and life history of chaparral shrub species	Ackerly, David	Biological Sciences	Stanford University
Functional diversity of California woody plant communities	Cornwell, Will	Biological Sciences	Stanford University
Stem-allometry and hydraulic conductivity in chaparral plants	Preston, Katherine	Biological Sciences	Stanford University
Community assembly on serpentine chaparral	Rajakaruna, Nishanta	Biological Sciences	Stanford University
Reference surveys for Stanford Foothills Restoration Project	Anderson, Sean; Oliveira, Paulo	Center for Conservation Biology	Stanford University
Annual grassland responses to litter manipulation	Amatangelo, Kathryn	Biological Sciences & Global Ecology	Stanford Univ. & Carnegie Inst.
Biosystematics of Hilara, Medetera, and parasitoids of Tachinidae	Arnaud, Paul	Entomology	Cal. Academy of Sciences
Carbon burial and preservation in Searsville and other lake environments	Berhe, Asmeret Asefaw	Environ. Sci., Policy & Mgmt.	Univ. of California, Berkeley
Variation in heavy metal tolerance in Lasthenia californica	Rajakaruna, Nishanta	Botany	Univ. of British Columbia
Population biology of the butterfly <i>Euphydryas chalcedona</i>	Brown, Irene	JRBP	
San Francisquito watershed mapping	Cohen, Brian		GreenInfo Network
Magnesium cycles in California serpentine areas: Edgewood Park and JRBP	Coleman, Robert; Oze, Christopher;	Geological & Environmental Sciences	Stanford University
200	Skinner, Catherine	Geology & Geophysics	Yale University
Mammalian herbivores as mediators of community structure and soil fertility	Cushman, Hall	Biology	Sonoma State University
Functional trait comparison among different grass floras	Diaz, Sandra	Instituto Multidisciplinario de	Universidad Nacional de
***		Biologia Vegetal	Cordoba, Argentina
Long-term studies of <i>Euphydryas editha bayensis</i>	Ehrlich, Paul; Boggs, Carol	Biological Sciences & CCB	Stanford University
Jasper Ridge Global Change Experiment	Field, Christopher;	Global Ecology	Carnegie Instit. of Washington
NG.	Bohannan, Brendan; Mooney, Harold;	Biological Sciences	Stanford University
	Vitousek, Peter		
-	Somerville, Shauna	Plant Biology	Carnegie Instit. of Washington
Spectral measurements of biomass and vegetation structure	Asner, Greg	Global Ecology	Carnegie Instit. of Washington
Global change, potential nitrification and denitrification	Barnard, Romain	Biological Sciences	Northern Arizona University
Effects of global change on methane oxidation	Blankinship, Joey	Biological Sciences	Northern Arizona University
Spectral measurement of aboveground vegetation dynamics	Chiariello, Nona	Biological Sciences	Stanford University
Population and species effects on biogeochemistry	Cleland, Elsa	Biological Sciences & Global Ecology	Stanford Univ. & Carnegie Inst
Responses of grassland productivity to global change	Dukes, Jeff	Global Ecology	Carnegie Instit. of Washington
Plant organic compounds and microbial functional diversity	Henry, Hugh	Biological Sciences	Stanford University
Response of soil bacterial communities to elevated CO ₂	Horz, Peter	Biological Sciences	Stanford University
Effects of global change on soil nitrogen cycling	Hungate, Bruce	Biological Sciences	Northern Arizona University
Dynamics of slug populations	Hsu, Grace		Saratoga High School
Responses of soil carbon to global change	Juarez, John	Biological Sciences & Global Ecology	Stanford Univ. & Carnegie Inst
Phosphorus limitation under global change manipulations	Menge, Duncan	Biological Sciences & Global Ecology	Stanford Univ. & Carnegie Inst
Belowground effects of multiple global changes	Moore, Lisa	Biological Sciences & Global Ecology	Stanford Univ. & Carnegie Inst
Belowground dynamics of carbon, nitrogen, and biomass	Shaw, Rebecca	Global Ecology	Carnegie Instit. of Washington
Changes in gene expression in <i>Geranium dissectum</i> and <i>Avena barbata</i>	Thayer, Sue	Global Ecology	Carnegie Instit. of Washington
Isotopic analysis of respiratory carbon dynamics	Torn, Margaret	Center for Isotope Geochemistry	Lawrence Berkeley Nat'l. Lab.
Videorecording of seasonal changes for remote sensing course development	Fleishman, Erica	Center for Conservation Biology	Stanford University
	Seto, Karen	Ctr. for Environ. Science & Policy	Stanford University

PROJECT	PRINCIPAL INVESTIGATOR(S)	DEPARTMENT OR DIVISION	INSTITUTION
Climate-vegetation relationships in Mediterranean ecosystems	Garcia, Monica	LAWR/Agricultural Sciences	U.C. Davis/Pol. Univ Madrid
	- CODE	128 19	(Spain)
Calochortus phylogeography	Givnish, Thomas	Botany	Univ. of Wisconsin-Madison
Argentine ant (Linepithema humile) invasion and the response of native ants	Gordon, Deborah	Biological Sciences	Stanford University
Effects of tending by Argentine ants on Homoptera abundance	Fleming-Davies, Arietta	Biological Sciences	Stanford University
Chemical ecology of the Argentine ant	Greene, Michael	Biological Sciences	Stanford University
Population dynamics of the Argentine ant in JRBP	Heller, Nicole	Biological Sciences	Stanford University
Gene flow and sex-biased dispersal in Argentine ant invasions	Ingram, Krista	Biological Sciences	Stanford University
Mammals of JRBP	Hadly, Elizabeth	Biological Sciences	Stanford University
Applied paleoethnoecology of the San Francisco Bay peninsula	Hammett, Julia	Social Science	Truckee Meadows Comm. Coll.
Monitoring of water flow and quality	Hecht, Barry; Owens, Jonathan	JI 1	Balance Hydrologics, Inc.
Simulation of hydrologic response and sediment transport after dam removal	Heppner, Christopher	Geological & Environmental Sciences	Stanford University
Effects of rainfall variability and gopher removal on serpentine grassland	Hobbs, Richard	Environmental Science	Murdoch University, Australia
GPS mapping for the San Francisquito Archaeological Research Project GIS	Jones, Laura	Campus Archaeology	Stanford University
Earthquake prediction from precursory electromagnetic anomalies	McPhee, Darcy; Klemperer, Simon	Geophysics	Stanford University
Natural barriers to Argentine ant invasion: the role of transitional environments	Kark, Salit; Heller, Nicole;	Biological Sciences	Stanford University
. h.	Young, Rebecca	JRBP	Stanford University
Regional surveys of annual acorn production	Koenig, Walter	Hastings Natural History Reserv.	Univ. of California, Berkeley
Carbon cycling in shrub and grassland landscapes invaded by exotics	Koteen, Laurie	Energy and Resources Group	Univ. of California, Berkeley
Broad band seismic monitoring	Kovach, Robert	Geophysics	Stanford University
	VIII CONT	Berkeley Digital Seismic Network	Univ. of California, Berkeley
	VIII BET		U.S. Geological Survey
Survey of San Francisquito Creek and removal of exotics	Launer, Alan	Center for Conservation Biology	Stanford University
Terrestrial plant stoichiometry	Matzek, Virginia	Biological Sciences	Stanford University
Long-term monitoring of ecosystem processes by eddy flux	Merchant, George; Field, Christopher	Global Ecology	Carnegie Instit. of Washington
	Kaduk, Joerg		University of Leicester
Photochemical changes in natural organics in Searsville Lake water	Mill, Theodore	Atmos. Chem. & Space Physics	SRI International
Stability of chromium(III) in the soil environment	Oze, Christopher	Geological & Environmental Sciences	Stanford University
Mapping of invasive plants along Santa Clara County creeks	Peritz, Jennifer		Santa Clara Valley Audubon So
The role of herbivores in structuring plant community composition	Peters, Halton	Biological Sciences & Global Ecology	Stanford Univ. & Carnegie Inst
Evolutionary dynamics of flower color polymorphism in <i>Linanthus parviflorus</i>	Schemske, Douglas	Plant Biology	Michigan State University
Assessment of Brachypodium distachyon for studies of cereal genomics	Somerville, Christopher	Plant Biology	Carnegie Instit. of Washington
Fire history of JRBP and the region	Stephens, Scott	Envir. Science, Policy, & Mgmt.	Univ. of California, Berkeley
-	Cohen, Philippe	JRBP	Stanford University
Passive cumulative monitoring of nitrogenous atmospheric pollutants and ozone	Weiss, Stuart		
/	Luth, David		
Long-term acoustical monitoring of bat activity	Mudd, Thomas	JRBP	
Biodiversity and grassland invasions	Zavaleta, Erika; Hulvey, Kris	Integrative Biology	Univ. of California, Berkeley

APPENDIX 2: PUBLICATIONS

Ackerly, D.D. (2003) Community assembly, niche conservatism and adaptive evolution in changing environments. International Journal of Plant Sciences 164: S165-S184.

Ackerly, D.D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs (in press).

Ackerly, D.D., Knight, C.A., Weiss, S.B., Barton, K., and Starmer, K.P. (2002) Leaf size, specific leaf area and microhabitat distribution of woody plants in a California chaparral: contrasting patterns in species level and community level analyses. Oecologia 130: 440-457.

Dukes, J.S. (2002) Comparison of the effect of elevated CO_2 on an invasive species (*Centaurea solstitialis*) in monoculture and community settings. Plant Ecology 160: 225-234.

Dukes, J.S. (2002) Species composition and diversity affect grassland susceptibility and response to invasion. Ecological Applications 12: 602-617.

Dukes, J.S. and Hungate, B.A. (2002) Elevated CO_2 and litter decomposition in California annual grasslands: which mechanisms matter? Ecosystems 5: 171-183. Dukes, J.S. and Mooney, H.A. Biological invaders disrupt ecosystem processes in western North America. Revista Chilena de Historia Natural (in press)

Evelyn, Michelle Jean (2002) Ecological consequences of forest fragmentation: Bats and birds in human-dominated landscapes. Ph.D. Dissertation, Department of Biological Sciences, Stanford University.

Evelyn, M., Stiles, D. and Young, R. Conservation of bats in urban landscapes: roost selection by *Myotis yumanensis* in a residential area in California. Biological Conservation (in press).

Gee, L., Neuhauser, D., Dreger, D., Pasyanos, M., Uhrhammer, R., and Romanowicz, B. The Rapid Earthquake Data Integration Project. In: W. Lee (ed) Handbook of Earthquake and Engineering Seismology, IASPEI (in press).

Higgins, P.A.T., Jackson, R.B., desRosier, J.M., and Field, C.B. (2002) Root production and demography in a California annual grassland under elevated atmospheric carbon dioxide. Global Change Biology 8: 841-850. Ingram, K.K. and Gordon, D.M. Genetic analysis of dispersal dynamics in an invading population of Argentine ants, *Linepithema humile*. Ecology (in press).

Jackson, R.B., Linder, C.R., Lynch, M., Purugganan, M., Somerville, S. and Thayer, S. (2002) Linking molecular insight and ecological research. Trends in Ecology and Evolution 17: 409-414.

Karakelian, Darcy (2002) Ultra-low frequency electromagnetic signals associated with earthquakes and fault creep in California. Ph.D. Dissertation, Department of Geophysics, Stanford University.

Kerr, Amber C. (2002) Soil nitrogen dynamics under simulated global changes in a California annual grassland. M.S. Thesis, Earth Systems Program, Stanford University.

Knight, Charles Alexander (2002) The evolutionary and ecological physiology of plant thermal tolerance. Ph.D. Dissertation, Department of Biological Sciences, Stanford University.

Knight, C.A. and Ackerly, D.D. (2002) An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature dependent increase in steady-state fluorescence. Oecologia 130: 505-514.

Koenig, W. D., Kelly, D., Sork, V.L., Duncan, R.P., Elkinton, J.S, Peltonen, M.S., and Westfall, R.D. (2003) Dissecting components of populationlevel variation in seed production and the evolution of masting behavior. Oikos: 581-591.

Lund, Christopher (2002) Ecosystem carbon and water budgets under elevated atmospheric carbon dioxide concentration in two California grasslands. Ph.D. Dissertation, Department of Biological Sciences, Stanford University.

McLaughlin, J.F., Hellmann, J.J., Boggs, C.L., and Ehrlich, P.R. (2002) Climate change hastens population extinctions. Proceedings of the National Academy of Sciences 99: 6070-6074.

McLaughlin, J.F., Hellmann, J.J., Boggs, C.L., and Ehrlich, P.R. (2002) The route to extinction: population dynamics of a threatened butterfly. Oecologia 132: 538-548.

Oze, Christopher (2003) Chromium geochemistry of serpentinites and serpentine soils. Ph.D. Dissertation, Department of Geological and Environmental Sciences, Stanford University.

Oze, C., Fendorf, S., Bird, D., and Coleman, R. Chromium geochemistry of serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science (in press).

Porter, S., Palhegyi, G., Haltiner, J., and Hecht, B. (2003) Developing an assessment method to address impacts from urbanization on stream channel stability. Proceedings of the American Water Resources Association Annual Conference.

Preston, K.A. and Ackerly, D.D. Hydraulic architecture and the evolution of shoot allometry in contrasting climates. American Journal of Botany (in press).

Rajakaruna, Nishanta (2002) Evolution and differentiation of edaphic races in the *Lasthenia californica* complex (Asteraceae:Heliantheae). Ph.D. Dissertation, Department of Botany, University of British Columbia.

Rajakaruna, N. (2003) Edaphic differentiation in *Lasthenia*: A model for studies in evolutionary ecology. Madroño 50: 34-40.

Rajakaruna, N., Baldwin, B.G., Chan, R., Desrochers, A.M., Bohm, B.A., and Whitton, J. (2003) Edaphic races and phylogenetic taxa in the *Lasthenia californica* complex (Asteraceae: Heliantheae): an hypothesis of parallel evolution. Molecular Ecology 12: 1675-1679.

Rajakaruna, N., Bradfield, G.E., Bohm, B.A., and Whitton, J. (2003) Adaptive differentiation in response to water stress by edaphic races of *Lasthenia californica* (Asteraceae). International Journal of Plant Sciences 164: 371-376.

Rajakaruna,N., Siddiqi, M.Y., Whitton,J., Bohm, B.A., and Glass, A.D.M. (2003) Differential responses to Na⁺/K⁺ and Ca²⁺/Mg²⁺ in two edaphic races of the *Lasthenia californica* (Asteraceae) complex: A case for parallel evolution of physiological traits. New Phytologist 15: 93-

Rillig, M.C., Wright, S.F., Shaw, M.R., and Field, C.B. (2002) Artificial ecosystem warming positively affects arbuscular mycorrhizae but decreases soil aggregation. Oikos 97: 52-58.

Sanders, N.J., Gotelli, N.J., Heller, N.E., and Gordon, D.M. (2003) Community disassembly by an invasive species. Proceedings of the National Academy of Sciences 100: 2474-2477. Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A., and Field, C.B. (2002) Grassland responses to global environmental changes suppressed by elevated CO_2 . Science 298: 1987-1990.

Tajima, F., Megnin, C., Dreger, D., and Romanowicz, B. (2002) Feasibility of real-time broadband waveform inversion for simultaneous moment tensor and centroid location determination. Bulletin of the Seismological Society of America 92: 739-750.

Thomas, Brian D. (2002) Legumes and nitrogen fixation in an annual grassland: responses to herbivory and climate change. Ph.D. Dissertation, Department of Biological Sciences, Stanford University. Zavaleta, E.S, Shaw, M.R., Chiariello, N.R., Mooney, H.A., and Field, C.B. (2003) Additive effects of simulated climate changes, elevated CO_2 , and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences 100: 7650-7654.

Zavaleta, E.S, Shaw, M.R., Chiariello, N.R., Thomas, B.D., Cleland, E.E., Field, C.B., and Mooney, H.A. Responses of a California grassland community to three years of experimental climate change, elevated CO_2 and N deposition. Ecological Monographs (in press).

Zavaleta, E.S., Thomas, B.D., Chiariello, N.R., Asner, G.P. and Field, C. B. (2003) Plants reverse warming effect on ecosystem water balance. Proceedings of the National Academy of Sciences 100: 9892-9893.

APPENDIX 3: DOCENT TOURS & INSTRUCTIONAL USE

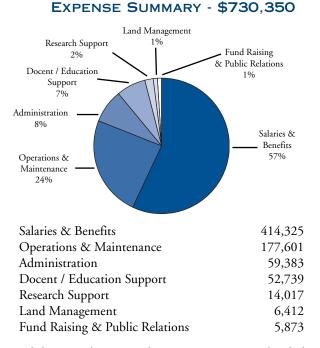
STANFORD UNIVERSITY CLASSES (2,622)

Introduction to Prehistoric Archaeological Sites (Rick) Anth Sci 3 Archaeological Field Methods (Bandy) Anth Sci 149 Arch 19 Historical Archaeological Field Methods, Continuing Studies (Jones, Bandy) Art Hist 150A American Architecture and Urbanism (Littman) Bio 13 Wildflower Families of the Bay Area, Continuing Studies (Corelli) Trees and Shrubs of the San Francisco Bay Region, Bio 35 Continuing Studies (Corelli) Core Experimental Lab (Malladi, Yelton) Bio 44Y JRBP Docent Training Program (Vitousek) Bio 96A/B Biology and Global Change (Matson, Vitousek, Bio 117 Mooney) **BIO 120** General Botany (Preston) Plant Taxonomy (Preston, Cornwell, Ray) Bio 223 Accessing Architecture Through Drawing (Walters) **CEE 310** Big Dams, City Hall, and the Sierra Club (Kitanidis) CEE 61Q Water Resources (Freyberg) **CEE 166D** Energy Efficient Buildings (Masters) **CEE 176A** Investigating Stanford's Treasures (Moser) **CTL 60** Introduction to Earth Systems (Ernst) Esvs 10 Esys 189 Field Studies in Earth Systems (Chiariello, Fendorf, Ackerly, Matson, Miller) Science of Soils (Fendorf) GES 175 Major Figures in 20th-Century Philosophy (Føllesdal) Phi 133 Urb 172 Green Architecture (Jacobson) Environmentally Sustainable Cities (Cushing) Urb 181 Quest Scholars Program (Ackerly) History of Stanford Architecture (Kwan)

NON-STANFORD UNIVERSITY CLASSES (148)

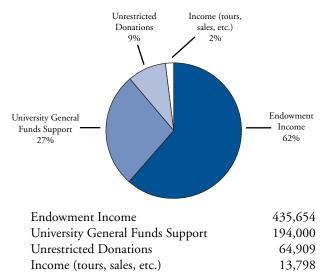
Bio 13	Santa Clara University, Investigations in Ecology &
	Evolution (Edgerly-Rooks)
Bio 103	Cañada College, Native Plants and Wildflowers
	(Steiner)
CE 140	Santa Clara Univ., Water Resources Engineering (Perry)
720958X	De Anza College, Natural History of the Bay Area
	(West-Bourke)
ES 79	De Anza College, Renewable and Alternative Energy
	Systems (Gould)
-	Ecological Society of America, Strategies for Ecology
	Education, Development, and Sustainability

STANFORD ORGANIZATIONS (1.299)Association of Chinese Students and Scholars at Stanford Bechtel International Center Beeline Group Center for Comparative Studies in Race and Ethnicity Center for Advanced Study in the Behavioral Sciences Cantor Center for Visual Arts Department of Biological Sciences Department of Civil and Environmental Engineering Department of Physics Digital Vision Fellowship Program Escondido Village Faculty Women's Club Graduate School of Business Hopkins Marine Station Information Technology Systems and Services Master of Liberal Arts Alumni Medical School Alums Office of Technology Licensing **Ouillen** Dorm Robinson Dorm School of Engineering School of Medicine Stanford Alumni Club of Los Gatos / Saratoga Stanford Environmental Law Society Stanford Libraries Staff Association Stanford Management Company Stanford Teacher Education Program Stanford University Board of Trustees Stanford University Emeriti Board of Trustees Synergy House Toyon Dorm Undergraduate Advising Center


OTHER ORGANIZATIONS (2,848)

The American Society of Landscape Architects Ano Nuevo State Reserve

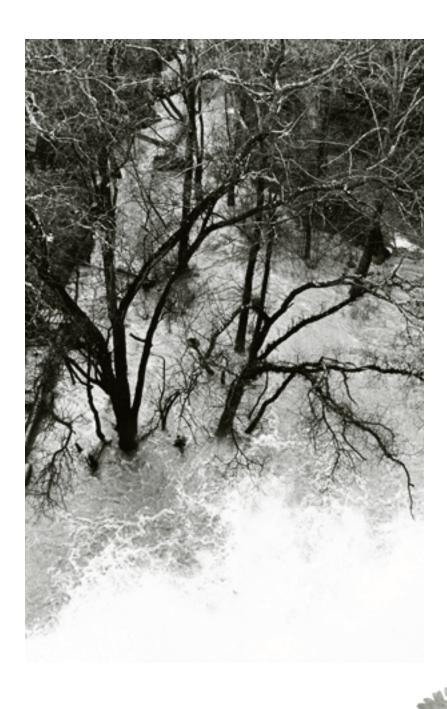
Anshen + Allen California Garden and Landscape History Society California Native Plant Society Canopy Carnegie Institution of Washington Chartwell School Crystal Springs School Eastside College Preparatory School Edgewood County Park and Natural Preserve Environmental Defense Environmental Volunteers Filoli Docents & Horticulturists Fitzgerald Marine Reserve The Forum Foundation for Global Community Gamble Garden Golden Gate Biosphere Reserve Gunn High School Hillsdale High School Menlo School Menopausal Men's Marching Group Muwekma Tribe Palo Alto Fire Department The Peninsula School Portola Valley Ranch Rob Wellington Quigley Architectural Firm Rocky Mountain Biological Laboratory San Mateo County Parks and Recreation San Mateo County RecycleWorks Santa Clara Valley Audubon Society Sequoia Audubon Sierra Club New York Swedish Women's Educational Association Town of Portola Valley Union of Concerned Scientists University Corporation for Atmospheric Research US Green Building Council Wild Bird Center of San Carlos Woodside-Atherton Garden Club Woodside High School Young Presidents' Organization



APPENDIX 4: FINANCIAL SUMMARY: 2002-03 FISCAL YEAR -

Expenses exceeded revenue due to several one-time costs associated with the move into the Leslie Shao-ming Sun Field Station: These expenses totaled \$76,580 and included installation of a cistern, additional casework and countertops, classroom furnishings and projectors, shelving, and lockers. The base operating budget without one-time expenses associated with the move into the Sun Field Station came to \$677,183. This is about \$4,000 less than the last fiscal year.

REVENUE SUMMARY - \$708,361



Unrestricted donations included pledges of \$10,000 associated with the capital campaign for the Leslie Shao-ming Sun Field Station. The shortfall between expenses and revenue is partly a result of a reduction in endowment payout and was covered by unrestricted donor accounts.

APPENDIX 5: DONORS

UNRESTRICTED GIFTS, SEPTEMBER 1, 2002 -AUGUST 31, 2003

Amber Foundation Anonymous Paul H. & Madeline L. Arnaud, Jr. Richard K. Arnold Leonie Batkin Nancy & Dr. Clayton Bavor Kathleen Bennett & Thomas J. Malloy Monika Björkman Irene Brown Robert R. Buell **James** Caldwell Dudlev B. & Curtis R. Carlson Iack Chin William H. Clark Mary H. & Robert Dodge Carol A. & Luis E. Ebner Karin A. Ecklemeyer Nancy H. & David W. Ferguson Edward M. Fryer Sara A. Fultz Stephen J. Galli, M.D. Lindy G. Gardiner Margaret E. Green Evelyn D. & Walter Haas, Jr. Fund Carol & Dexter Hake Karen D. Hamilton Dr. Benjamin C. and Ruth Hammett Mary C. Henry & Rajpal Sandhu Foundation Pauline E. Hevneker Leo M. & Florence A. Holub Mary Hufty & Daniel S. Alegria

Margery Janes Johnson & Johnson Dirk & Charlene Kabcenell Anthony J. & Judith H. Kramer Kerstin Fraser & Alan G. Magary Martin Family Foundation Robert I. Masi, M.D. Arthur Matula Ethel B. Meece Lincoln E. Moses Mary Ann & James Alan Nahmens John R. Page Ruth S. & David Y. Porter Earl F. & Patricia Cashel Schmidt, Jr. Albert & Joel Wells Schreck Shack Riders Rolf G. Spamer, DDS Peter D. Stent Anthony Sun The Rev. Marylou McClure Tavlor Ruth & Eugene W. Troetschler Anne E. Warren Richard J. & Louise Wiesner Eleanor I. Wood Woodside-Atherton Garden Club John Working Sunia I. Yang Richard I. Yankwich & M. Megan McCaslin William H. & Annette J. Young

APPENDIX 6: THE JRBP COMMUNITY

David Ackerly Molly Aeck Kathryn Amatangelo Sean Anderson Chris Andrews Michael Anthony Paul Arnaud Ron Arps Greg Asner Marianne Austin Monya Baker Matthew Bandy Marisha Banister Mary Baron Nancy Bavor Kathleen Bennett Asmeret Asefaw Berhe Joseph Berry Radika Bhaskar Monika Björkman Kindel Blau-Launer Carol Boggs Brendan Bohannan Sharon Brauman Kathleen Brizgys Bill Brown Irene Brown Bob Buell Gene Bulf Ruth Buneman Al Butner Kim Carlson Nicholas Casev Sally Casey Ted Chandik Zoe Chandik Andrew Chang Audrey Chang Aleksendr Chebanov Carl Chenev Nona Chiariello Alvin Chin Jack Chin Jean Clark William Clark Betsy Clebsch Elsa Cleland Brian Cohen Philippe Cohen Robert Coleman Heather Cooley

Toni Corelli Will Cornwell Stella Cousins Jenny Creelman Rig Currie Hall Cushman Gretchen Daily Yvonne Daley Marge De Staebler Fran Delagi Kenneth Dixon Bob Dodge Janet Doell Ted Dolton Kim Dongkyun Jeff Dukes Michael Eckert Janice Edgerly-Rooks Edwin Ehmke Paul Ehrlich Lisa Ehrlich Linda Elkind Claire Elliot Gary Ernst Irene Estelle Michelle Evelyn Deana Fabbro-Johnston Brooke Fabricant Natasha Fabricant Ron Fark John Fay Scott Fendorf Christopher Field Susan Finlayson Forrest Fleischman Erica Fleishman Arietta Fleming-Davies Tony Fraser-Smith David Freyberg Chris Friedel Zoë Friedman-Cohen Edward Frver Dania Gamble Monica Garcia Iihan Gearon Susan Gere Thomas Givnish John Glathe Bill Gomez

Deborah Gordon Carol Graham Leda Beth Gray Margaret Green Michael Greene Alan Grundmann Jessica Guh Elizabeth Hadly Carol Hake Dexter Hake Abby Hall Becca Hall Brad Hall Tim Hall Iulia Hammett Stephen Hass Chip Haven Barry Hecht Nicole Heller Hugh Henry Christopher Heppner Richard Hobbs Justin Holl Gordon Holtgrieve Leo Holub Whitney Hopkins Hans-Peter Horz Shellev Hou Patrick Hsieh Grace Hsu Mary Hufty Lia Hull Kris Hulvey Bruce Hungate Krista Ingram Peter Jacke Debi Jamison Richard Jeffers Gerry Jennings Eliza Jewett Laura Jones John Juarez Tamara Juarez Joerg Kaduk Salit Kark Marcia Keimer Donald Kennedy Bill Kirsher Gary Kittleson Simon Klemperer Charles Knight

Walter Koenig Diana Koin Laurie Koteen Robert Kovach Margaret Krebs John Kriewall David Kroodsma Ann Lambrecht Jean Lane Aranzazu Lascurain Peter LaTourrette Alan Launer Philip Leighton Cynthia Bradford Lencioni Tom Lindsay Scott Loarie Flora Lu Chris Lund Nancy Lund David Luth JJ Markman Christine Martens David Martinez Judy Mason Don Mason Pamela Matson Virginia Matzek Margaret Mayfield Laura McLendon Ann McMillan Darcy McPhee Laura McVittie Ethel Meece Duncan Menge George Merchant Tom Merigan Deanna Messinger Ted Mill Elizabeth Miller Lawrence Miller Linda Bea Miller Michael Milne Michele Minihane Harold Mooney Lisa Moore Betsy Morgenthaler Lincoln Moses Tom Mudd Muwekma Tribe Karen Nagy

Rosa Navarro John-O Niles Paulo Oliveira Pamela Olson Tamsin Orion Ionathan Owens Christopher Oze Brvan Palmintier Anna Paret George Parks Jennifer Peritz Ross Perlin Halton Peters Claire Phillips Patti Poindexter Jim Pollock Ruth Porter Jacqueline Pratt Katherine Preston Charles Preuss Charles Quinn Nishanta Rajakaruna Simha Reddy Alice Reeves Virginia Rich John Rick Donna Rilev Lennie Roberts Martha Roberts Judy Robertson Andy Robinson Leonard Robinson Terry Root Anne Rosenthal Ramón Roullard Elizabeth Rush Leonard Rush Nathan Sanders Britt Sandler Misty Sato Douglas Schemske Jessie Schilling Stephen Schneider Vivian Schoung Joan Schwan Dylan Schwilk John Scofield Jeanne Sedgwick Çagan Sekercîoglu Richard Seymour Becky Shaw

Dave Siebert **Julia Silvis** Joel Simon Catherine Skinner Geoffrey Skinner Gary Smith Marion Smith Jay Smolik Chris Somerville Shauna Somerville Samantha Staley Jay Stamps Kathleen Starmer Cindy Stead Scott Stephens David Stiles Tim Sun Jan Talbert Susan Thayer Brian Thomas Victor Thompson Sara Timby Todd Tobeck Margaret Torn Ioshua Traube Ruth Troetschler Carv Tronson Parker Van Valkenburgh Timothy Varga William Vermeere Peter Vitousek Judith Wagner Linda Wagner Alan Weiss Stuart Weiss Marvanne Welton Diane West-Bourke Erik Whitehorn Dick Wiesner Cindy Wilber Paul Wineman John Working Sunia Yang Alexis Yelton Melanie Yelton Rebecca Young Carol Zabel Erika Zavaleta David Zinniker Dan Zlatnik

JRBP COMMITTEE

David Ackerly, Assistant Professor and Chair Harold Mooney, Professor Paul Ehrlich, Professor Chris Field, Professor David Freyberg, Professor Philippe Cohen, Administrative Director Elsa Cleland, Graduate Student Nicole Heller, Graduate Student

JRBP STAFF

Philippe Cohen, Ph.D., Administrative Director Nona Chiariello, Ph.D., Research Coordinator Cindy Wilber, Program Coordinator Justin Holl, Publications Coordinator Rebecca Young, GIS and Database Manager Cary Tronson, Operations Steward Leonard Robinson, Resident Caretaker Brooke Fabricant and Deanna Messinger, Resident Rangers

PHOTOGRAPHS

Sean Anderson, 8 (6), 9 (11) Nona Chiariello, 8 (1, 2, 4, 5, 7, & 8), 9 (9 & 10) Philippe Cohen, 1, 2, 3, 15 (8), 23 Justin Holl, 8 (3), 14 (4) Leo Holub, 11, 12, 19, 25, 26, 29 Laura McLendon, 4, 16-17 Tom Mudd, 18 Cindy Wilber, 13, 14 (1-3, 5-7), 15 (9 & 10)

ILLUSTRATIONS

Chris Andrews, 20, 21, 28 Jim Caldwell, front cover, back cover Eliza Jewett, inside front cover Janet H. Vogelfang, 27

Layout by Justin Holl and Rebecca Young

FOR MORE INFORMATION ABOUT JASPER RIDGE BIOLOGICAL PRESERVE:

Administrative Director Jasper Ridge Biological Preserve Stanford University Stanford, CA 94305-5020 email: philippe.cohen@stanford.edu URL: http://jasper1.stanford.edu/ Phone: (650) 851-6814 Fax: (650) 851-7334

If you would like to make a gift of support to Jasper Ridge Biological Preserve, please call Stanford's Office of Planned Giving: (650) 725-4358 or visit the following URL: http://givingtostanford.stanford.edu/homeG.html.

Printed by Alonzo Printing on recycled paper with soy-based ink.

In Memoriam

Konrad B. Krauskopf, a pioneer in the field of geochemistry, a member of the Stanford University faculty since 1939 and a Jasper Ridge geology instructor, died at his campus home on May 4, 2003 at age 92. Krauskopf was one of very few scientists in the late 1930s who helped define the emerging field of geochemistry, which combined the concepts of physical chemistry with those of geology. Krauskopf "provided scientists with the original defining texts in geochemistry and physical geology," according to Gary Ernst, Jasper Ridge instructor and Stanford Professor of Earth Sciences. In a career spanning more than six decades, Krauskopf led numerous geological and mapping expeditions to such places as the Pacific Northwest, the Sierra Nevada and White Inyo Ranges, the Transmexican Volcanic Belt, and coastal Norway. His pioneering research and academic achievements earned him numerous honors, including the Legendary Geoscientist Award from the American Geological Institute in 2000 and the Distinguished Public Service Medal from the Mineralogical Society of America in 1994. He was a member of the National Academy of Sciences and the American Philosophical Society.

